3.1455 \(\int \frac{x}{a+b x^8} \, dx\)

Optimal. Leaf size=193 \[ -\frac{\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{a}+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{a}+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}+1\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}} \]

[Out]

-ArcTan[1 - (Sqrt[2]*b^(1/4)*x^2)/a^(1/4)]/(4*Sqrt[2]*a^(3/4)*b^(1/4)) + ArcTan[1 + (Sqrt[2]*b^(1/4)*x^2)/a^(1
/4)]/(4*Sqrt[2]*a^(3/4)*b^(1/4)) - Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x^2 + Sqrt[b]*x^4]/(8*Sqrt[2]*a^(3/4)
*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x^2 + Sqrt[b]*x^4]/(8*Sqrt[2]*a^(3/4)*b^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.154385, antiderivative size = 193, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.636, Rules used = {275, 211, 1165, 628, 1162, 617, 204} \[ -\frac{\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{a}+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{a}+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}+1\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}} \]

Antiderivative was successfully verified.

[In]

Int[x/(a + b*x^8),x]

[Out]

-ArcTan[1 - (Sqrt[2]*b^(1/4)*x^2)/a^(1/4)]/(4*Sqrt[2]*a^(3/4)*b^(1/4)) + ArcTan[1 + (Sqrt[2]*b^(1/4)*x^2)/a^(1
/4)]/(4*Sqrt[2]*a^(3/4)*b^(1/4)) - Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x^2 + Sqrt[b]*x^4]/(8*Sqrt[2]*a^(3/4)
*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x^2 + Sqrt[b]*x^4]/(8*Sqrt[2]*a^(3/4)*b^(1/4))

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{a+b x^8} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{a+b x^4} \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,x^2\right )}{4 \sqrt{a}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,x^2\right )}{4 \sqrt{a}}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,x^2\right )}{8 \sqrt{a} \sqrt{b}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,x^2\right )}{8 \sqrt{a} \sqrt{b}}-\frac{\operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,x^2\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}-\frac{\operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,x^2\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}\\ &=-\frac{\log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}}\\ &=-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} x^2}{\sqrt [4]{a}}\right )}{4 \sqrt{2} a^{3/4} \sqrt [4]{b}}-\frac{\log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}+\frac{\log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x^2+\sqrt{b} x^4\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}}\\ \end{align*}

Mathematica [A]  time = 0.0409372, size = 279, normalized size = 1.45 \[ -\frac{-\log \left (-2 \sqrt [8]{a} \sqrt [8]{b} x \sin \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )-\log \left (2 \sqrt [8]{a} \sqrt [8]{b} x \sin \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )+\log \left (-2 \sqrt [8]{a} \sqrt [8]{b} x \cos \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )+\log \left (2 \sqrt [8]{a} \sqrt [8]{b} x \cos \left (\frac{\pi }{8}\right )+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )-2 \tan ^{-1}\left (\frac{\sqrt [8]{b} x \sec \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}-\tan \left (\frac{\pi }{8}\right )\right )+2 \tan ^{-1}\left (\frac{\sqrt [8]{b} x \sec \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}+\tan \left (\frac{\pi }{8}\right )\right )+2 \tan ^{-1}\left (\cot \left (\frac{\pi }{8}\right )-\frac{\sqrt [8]{b} x \csc \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}\right )+2 \tan ^{-1}\left (\frac{\sqrt [8]{b} x \csc \left (\frac{\pi }{8}\right )}{\sqrt [8]{a}}+\cot \left (\frac{\pi }{8}\right )\right )}{8 \sqrt{2} a^{3/4} \sqrt [4]{b}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*x^8),x]

[Out]

-(2*ArcTan[Cot[Pi/8] - (b^(1/8)*x*Csc[Pi/8])/a^(1/8)] + 2*ArcTan[Cot[Pi/8] + (b^(1/8)*x*Csc[Pi/8])/a^(1/8)] -
2*ArcTan[(b^(1/8)*x*Sec[Pi/8])/a^(1/8) - Tan[Pi/8]] + 2*ArcTan[(b^(1/8)*x*Sec[Pi/8])/a^(1/8) + Tan[Pi/8]] + Lo
g[a^(1/4) + b^(1/4)*x^2 - 2*a^(1/8)*b^(1/8)*x*Cos[Pi/8]] + Log[a^(1/4) + b^(1/4)*x^2 + 2*a^(1/8)*b^(1/8)*x*Cos
[Pi/8]] - Log[a^(1/4) + b^(1/4)*x^2 - 2*a^(1/8)*b^(1/8)*x*Sin[Pi/8]] - Log[a^(1/4) + b^(1/4)*x^2 + 2*a^(1/8)*b
^(1/8)*x*Sin[Pi/8]])/(8*Sqrt[2]*a^(3/4)*b^(1/4))

________________________________________________________________________________________

Maple [A]  time = 0.002, size = 136, normalized size = 0.7 \begin{align*}{\frac{\sqrt{2}}{16\,a}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ({x}^{4}+\sqrt [4]{{\frac{a}{b}}}{x}^{2}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{4}-\sqrt [4]{{\frac{a}{b}}}{x}^{2}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}}{8\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({{x}^{2}\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }+{\frac{\sqrt{2}}{8\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({{x}^{2}\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^8+a),x)

[Out]

1/16*(1/b*a)^(1/4)/a*2^(1/2)*ln((x^4+(1/b*a)^(1/4)*x^2*2^(1/2)+(1/b*a)^(1/2))/(x^4-(1/b*a)^(1/4)*x^2*2^(1/2)+(
1/b*a)^(1/2)))+1/8*(1/b*a)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^2+1)+1/8*(1/b*a)^(1/4)/a*2^(1/2)*arc
tan(2^(1/2)/(1/b*a)^(1/4)*x^2-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^8+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.25377, size = 319, normalized size = 1.65 \begin{align*} \frac{1}{2} \, \left (-\frac{1}{a^{3} b}\right )^{\frac{1}{4}} \arctan \left (-a^{2} b x^{2} \left (-\frac{1}{a^{3} b}\right )^{\frac{3}{4}} + \sqrt{x^{4} + a^{2} \sqrt{-\frac{1}{a^{3} b}}} a^{2} b \left (-\frac{1}{a^{3} b}\right )^{\frac{3}{4}}\right ) + \frac{1}{8} \, \left (-\frac{1}{a^{3} b}\right )^{\frac{1}{4}} \log \left (x^{2} + a \left (-\frac{1}{a^{3} b}\right )^{\frac{1}{4}}\right ) - \frac{1}{8} \, \left (-\frac{1}{a^{3} b}\right )^{\frac{1}{4}} \log \left (x^{2} - a \left (-\frac{1}{a^{3} b}\right )^{\frac{1}{4}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^8+a),x, algorithm="fricas")

[Out]

1/2*(-1/(a^3*b))^(1/4)*arctan(-a^2*b*x^2*(-1/(a^3*b))^(3/4) + sqrt(x^4 + a^2*sqrt(-1/(a^3*b)))*a^2*b*(-1/(a^3*
b))^(3/4)) + 1/8*(-1/(a^3*b))^(1/4)*log(x^2 + a*(-1/(a^3*b))^(1/4)) - 1/8*(-1/(a^3*b))^(1/4)*log(x^2 - a*(-1/(
a^3*b))^(1/4))

________________________________________________________________________________________

Sympy [A]  time = 0.183402, size = 22, normalized size = 0.11 \begin{align*} \operatorname{RootSum}{\left (4096 t^{4} a^{3} b + 1, \left ( t \mapsto t \log{\left (8 t a + x^{2} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**8+a),x)

[Out]

RootSum(4096*_t**4*a**3*b + 1, Lambda(_t, _t*log(8*_t*a + x**2)))

________________________________________________________________________________________

Giac [A]  time = 1.23817, size = 252, normalized size = 1.31 \begin{align*} \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x^{2} + \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{8 \, a b} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x^{2} - \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{8 \, a b} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (x^{4} + \sqrt{2} x^{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{16 \, a b} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (x^{4} - \sqrt{2} x^{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{16 \, a b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^8+a),x, algorithm="giac")

[Out]

1/8*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x^2 + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b) + 1/8*sqrt(2)*(a
*b^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x^2 - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b) + 1/16*sqrt(2)*(a*b^3)^(1/4)*l
og(x^4 + sqrt(2)*x^2*(a/b)^(1/4) + sqrt(a/b))/(a*b) - 1/16*sqrt(2)*(a*b^3)^(1/4)*log(x^4 - sqrt(2)*x^2*(a/b)^(
1/4) + sqrt(a/b))/(a*b)